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Measure synchronization in coupledw4 Hamiltonian systems
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Transitions to measure synchronization both in the quasiperiodic and chaotic cases are investigated based on
numerical computation of two coupledw4 equations. Some relevant quantities such as the bare energies, the
interaction energy, and the phase difference of the two oscillators are computied to clarify the characteristics of
the transitions and the measure-synchronous states. A bifurcation with discontinuous bare energy and continu-
ous interaction energy, which takes the maximum value at the critical point, is found for the transition from the
desynchronous quasiperiodic state to the measure-synchronous quasiperiodic state, and the related power law
scalings are deduced. Stick-slip and random-walk-like behavior of the phase difference is found for the chaotic
measure-synchronous state, and this explains the monotonous increase of the interaction energy with an
increase of coupling.
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I. INTRODUCTION

Synchronization phenomena have been investigated s
the 17th century@1#. The early studies focused on the sy
chronization of various periodic systems and, recently, ch
synchronization has attracted much attention@2–6#. Never-
theless, so far most of the works on synchronization p
nomena have considered dissipative systems only, since
chronization between two trajectories is often related to
contraction of the phase space volume. Hamiltonian syst
conserve their phase space volumes@7#, and does not allow
synchronization in the original sense, e.g., in the sense
two nonidentical trajectories approach an identical one as
pototically.

In Ref. @8#, the authors revealed an interesting synchro
zation phenomenon of Hamiltonian systems: measure
chronization ~MS!, i.e., they found a transition in two
coupled Hamiltonian oscillators from a state where the t
oscillators visit two different phase space domains~measure
nonsynchronous! to a state where the two oscillators sha
the same phase domain~measure synchronous!. Hamiltonian
systems serve as typical model systems in classical as we
quantum mechanics@9–11#, and a variety of practical sys
tems can be well approximated by the Hamiltonian form
ism even at weak dissipation. Thus, it is important to und
stand the synchronization processes of Hamiltonian syste
Moreover, it is of great significance to extend~if possible!
the concept of synchronization to quantum systems~to our
knowledge, no such extension has appeared!, a comprehen-
sive understanding of synchronization in Hamiltonian s
tems is a crucial step towards such extension.

So far we have understood much less about MS of Ham
tonian systems than synchronization behavior of dissipa
systems. For instance, the behaviors of many physically
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portant quantities have not been investigated at the MS t
sition. In this paper, we use two coupled Hamiltonianw4

equations as our model, which is a typical model in class
mechanics and can be easily formulated in quantum mec
ics @11–13#. With this model we focus on the behaviors
the interaction energy and the phase angle difference
tween the two oscillators around the MS transition point. F
the MS transition between two quasiperiodic states,
found an interesting feature that the maximum interact
energy and the maximum average phase difference are
tained at the critical point, and we computed numerically
related power law scalings. This MS transition is found to
a transition with some quantities~e.g., bare energy, to b
explained in text! showing a first-order discontinuous bifu
cation, while some other quantities~e.g., interaction energy!
showing a second-order continuous bifurcation with disc
tinuous slope at the transition point. For chaotic MS state,
found stick-slip phase variation and a monotonic increase
interaction energy with an increase of coupling. The pa
will be organized as follows. In the following section, w
present our model and describe the MS phenomenon. In
III, the MS transition between quasiperiodic states is inv
tigated and in Sec. IV the transition from quasiperiodicity
chaos through MS is studied. The conclusion and a b
discussion are given in Sec. V.

II. MODEL AND MEASURE SYNCHRONIZATION

Our model comprises two linearly coupled identicalw4

systems with the Hamiltonian

H5
p1

21p2
2

2
1

q1
41q2

4

4
1«~q12q2!2. ~1!

Numerically, we simulate the corresponding canonical eq
tions
©2003 The American Physical Society15-1
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FIG. 1. Trajectories of the two
oscillators of Eqs.~2! in the (q,p)
plane. p1(0)50.1 and p2(0)
50.2. ~a! «50: The two trajecto-
ries are periodic.~b! «50.001:
The two separated ~measure-
desynchronous! quasiperiodic or-
bits. ~c! and ~d! «50.0035: The
two trajectories share the sam
phase space and reach MS.
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q̇15p1 , q̇25p2 ,

ṗ152q1
312«~q22q1!, ṗ252q2

312«~q12q2!. ~2!

A simple analysis shows that with coupling«, serving as an
adjustable parameter, the total energy can be regarded a
irrelevant parameter by a suitable scaling. Thus, we fix
total energyH50.025 throughout the paper, and study t
system behavior by varying the coupling«.

The system’s dynamics depends not only on«, but also
on its initial condition. Specifically, we will fix

q1~ t50!5q2~ t50!50. ~3!

A convenient feature of this arrangement is that the inter
tion energy

EI5«~q12q2!2 ~4!

is kept zero initially, and the variation of« does not change
the total energy for any initial choices ofp1(0) andp2(0).
Therefore, in our system there are two adjustable parame
one is the coupling strength« and the other is the initia
value ofp1 ~note thatp1

2/2<H andp256A2H2p1
2).

With system~2! we can find indeed different kinds of MS
transitions. In Fig. 1 we fixp1(0)50.1, p2(0)50.2 and plot
the trajectories of the two oscillators inqj –pj ( j 51,2),
phase planes for different couplings. In Fig. 1~a!, for zero
coupling, both oscillators have periodic orbits in differe
energy surfaces determined by its initial conditions. W
nonzero but small couplings@Fig. 1~b!, «50.001], the two
periodic orbits of Fig. 1~a! are replaced by two smooth qua
siperiodic trajectories wandering in two distinctive tori. B
further increasing« @Figs. 1~c! and 1~d!, «50.0035], we find
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that the two distinctive tori of Fig. 1~b! merge to an identica
enlarged torus, and both the oscillators share the same p
domain with their quasiperiodic motions, indicating a ph
nomenon of MS. In Fig. 2, we do the same as Fig. 1
replacing the initial condition asp1(0)55.4231022,
p2(0)50.217, and using different couplings. The results a
the same as Fig. 1, except that the trajectories in Figs.~c!
and 2~d! are chaotic rather than quasiperiodic as in Figs. 1~c!
and 1~d!. Therefore, we observe a MS transition betwe
different quasiperiodic~QP to QP!, motions, and also a MS
transition from quasiperiodicity to chaos~QP to CH!.

In order to clarify the MS transitions we measure the a
erage bare energieshj5^Ej&, j 51,2 as

h1,25
1

TE0

T

E1,2~ t !dt,

E1,2~ t !5
p1,2

2 ~ t !

2
1

q1,2
4 ~ t !

4
, ~5!

and plot these quantities in Fig. 3~a! for p1(0)50.1, p2(0)
50.2 ~the parameters for Fig. 1! by varying coupling«. It is
clear that there is a sharp transition at«5«c50.0032. Be-
fore «c («,«c) there is a finite difference betweenh1 and
h2, while above«c both oscillators have an identical avera
bare energy, clearly indicating MS. The finite jump of th
average bare energy differenceDh5h22h1 seems to indi-
cate a first-order phase transition. In Fig. 3~b! we plot the
largest Lyapunov exponent~LE! l for the case of Fig. 3~a!,
and find zerol before and after«c , justifying the MS tran-
sition is between quasiperiodic motions.

In Figs. 3~c! and 3~d! we do the same as for Figs. 3~a! and
3~b!, respectively, but withp1(0)55.4231022 and p2(0)
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FIG. 2. The same as Fig. 1
with p1(0)55.4231022 and
p2(0)50.217. ~a! «50, ~b! «
55.531023, ~c! and ~d! «51.5
31022. Measure synchronization
is achieved in~c! and~d!. The mo-
tion is periodic in ~a!, quasiperi-
odic in ~b!, and chaotic in~c! and
~d!.

FIG. 3. ~a! Average bare energies of Eqs.~5!, h1,2, plotted vs«. p1(0)50.1 andp2(0)50.2. Measure synchronization occurs at a critic
coupling«5«c50.0032, where discontinuous jumps ofh1,2 can be identified.~b! The largest LE plotted vs«. Zerol before and after«c

shows a MS transition from quasiperiodicity to quasiperiodicity.~c! Same as~a! with p1(0)55.4231022 andp2(0)50.217. MS occurs at
«c856.331023 and the fluctuations ofh1,2 curves for«*«c8 are due to the chaos-induced long transient.~d! Same as~c! with the largest LE
l plotted.l changes from zero to positive right at the MS critical point«c8 . Thus, in this case the MS transition is associated with
transition from quasiperiodicity to chaos.
066215-3
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FIG. 4. p1(0)50.1 andp2(0)50.2 ~for both Figs. 4 and 5!. ~a! Average interaction energyhI of Eq. ~6! plotted vs«. Unlike Fig. 3~a!,
hI is continuous and has a finite maximum value at«c . The derivative of thehI curve has discontinuity at«c and has infinite slopes righ
before and after«c . ~b! and ~c! The power law scalings ofDhI(«)5hI(«c)2hI(«), Eq. ~7!, before and after«c , respectively.
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50.217~the parameters of Fig. 2!. From Fig. 3~c! we can see
also a MS transition at«5«c856.331023, and from Fig.
3~d! we find zerol ~quasiperiodicity! for «,«c8 and positive
l ~chaoticity! for «.«c8 . Thus, the MS transition is directly
associated to quasiperiodicity-chaoticity transition. This o
servation is quite different from the conclusion of Ref.@8#,
where the authors declared that MS transitions have no r
tion with transitions to chaos. For chaotic motion one ne
extremely long time to reachh25h1 for the MS state just
after the MS transition, and this is the reason whyh1,2 fluc-
tuate in Fig. 3~c! after «c8 .

III. MS TRANSITION BETWEEN QUASIPERIODIC
STATES

We now proceed to study the characteristic features of
transitions. In this section, we focus on the QP to QP tra
tion of Fig. 3~a!. It is obvious that the interaction between th
two w4 oscillators plays a key role for the MS transition
Thus, it is interesting to investigate the behavior of the int
action energy in the transition process. In Fig. 4~a! we plot
the average interaction energy

hI5
1

TE0

T

«@q1~ t !2q2~ t !#2dt ~6!
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against the coupling«. We find thathI has a singularity at
the critical coupling«c . In Figs. 4~b! and 4~c! we show that
this singularity has power law scalings

hI~«c!2hI~«!}~«c2«!a, «,«c ;

hI~«c!2hI~«!}~«2«c!
b, «.«c ; ~7!

a' 1
2 , b' 1

3 .

Several interesting features can be observed in Fig
First, while the bare energiesh1,2 have discontinuity at«c in
Fig. 3~a!, hI is continuous at the critical point in Fig. 4~a!.
Since h1,2 and hI have the same unit (h11h21hI5H
50.025), it is thus nontrivial that at the same critical po
h1,2 show a ‘‘first-order’’ phase transition whilehI shows a
‘‘second-order’’ phase transition. The MS transition seems
belong to a novel class of bifurcations.

Second, thoughhI is continuous around«c and has a finite
maximum value at«c , the derivative ofhI over « @i.e., the
slope of thehI(«) curve# has a discontinuity and diverges
«c , following the scaling laws of Eq.~7!. The shape ofhI(«)
curve looks similar to thel type of phase transition in sta
tistical physics@14–16#.
5-4
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FIG. 5. ~a! Average absolute phase difference^uDuu& plotted vs«. ~b! Probability distribution density ofDuM for different couplings
«,«c . Singularity ofr(DuM) at DuM56p is observed.~c! The power law scaling ofr(DuM56p) near the critical point«&«c , Eq.~9!.
~d! The maximum phase difference~amplitude! A5uDu(t)uMax plotted vs« for «.«c . AmplitudeA decreases as« increases, justifying the
decreasing behaviors ofhI in Fig. 4~a! and^uDuu& in Fig. 5~a! for «.«c . ~e! The power law scaling of Eq.~10! for the amplitude of phase
difference for«.«c .
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It is interesting to understand whyhI increases so quickly
before «c , while decreases slowly after the MS transitio
Since the interaction energy is proportional to the coupl
«, it is thus natural thathI increases as« increases. However
a nontrivial behavior for«,«c is that hI increases with«
much faster than linear increase. This feature can be
plained, based on the average phase difference betwee
two oscillators defined as

^uDuu&5
1

TE0

T

uDu~ t !Mudt,

Du~ t !M5sgn@Du~ t !#@p2uDu~ t !modpu#,

Du~ t !5u1~ t !2u2~ t !,

u i~ t !5arctan~pi /qi !P@0,2p#, i 51,2. ~8!
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Here,u1,2(t) is defined in the range@0,2p# and Du(t)M is
defined in the range@2p,p# so as to indicate the relativ
positions of two oscillators in the phase plane. We find
Fig. 5~a! that^uDuu& increases as« increases for«,«c . This
tendency causes the increase of the average spatial dis
between the two oscillators, leading to a faster than lin
increase of the interaction energyhI with « as showin in Fig.
4~a!.

The behavior of the phase difference for«,«c can be
understood as follows. The interaction is the key force
the measure synchronization. Before synchronization the
oscillators have different phase frequencies. Near the
transition point, the difference of the frequencies of the t
oscillators becomes small. At the same time, the phase
ference has a larger probability of staying near the differe
anglesDu(t)M'6p as « is nearer to the critical coupling
«c , because at these angles the interaction can play the
5-5
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FIG. 6. p1(0)55.4231022 andp2(0)50.217~for both Figs. 6 and 7!. ~a! Same as Fig. 4~a! but with a different initial condition. In the
chaotic MS state,hI monotonously increases with« for «.«c8 ~excluding quasiperiodic states in some windows and for«@«c8), in sharp
contrast with the behavior of Fig. 4~a!. ~b! The average absolute phase difference^uDuu& plotted against«.
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important role in bringing the two oscillators to synchron
zation and phase locking. This is why^uDuu& increases with
« for «,«c . In Fig. 5~b!, we plot the phase difference prob
ability distribution densityr(DuM) for different«. It is clear
that r(DuM'6p) increases rapidly as« approaches«c ,
and thatr(DuM'0) decreases as« goes to«c . These ex-
plain well the tendencies of^uDuu& in Fig. 5~a! andhI in Fig.
4~a! for «,«c . In Fig. 5~c!, we show thatr(DuM'p) has a
power law scaling relation with«c2« as

r~DuM'p!}~«c2«!21/3. ~9!

After MS («.«c), the interaction energyhI decreases
with « @Fig. 4~a!#. This phenomenon is a bit surprising sin
EI(t) appears to be proportional to«. This tendency to de-
crease can be again understood, based on the behavior o
phase differenceDu. After the MS transition the phases o
the two oscillators are already locked to each other with
differenceDu(t)5u1(t)2u2(t) oscillating within the region
of (2p,p). In Fig. 5~d!, we plot the variation of maximum
phase differenceA5uDuuMax with coupling «. The ampli-
tude A decreases monotoniclly from«c . The shrinking of
uDuu leads to the decrease ofhI , and this decreasing trend
even more drastic than the linear increase of«, leading to the
overall decrease ofhI in Fig. 4~a! for «.«c . Moreover, as«
approaches«c the slope of theA–« curve diverges, whileA
itself approaches a finite value ofp. This again shows a
scaling power law relation of Fig. 5~e!:

p2A~«!}~«2«c!
1/2. ~10!

IV. MS TRANSITION FROM QUASIPERIODICITY TO
CHAOS

In the preceding section, we observed a MS transit
from QP to QP and found the related power scaling laws.
changing the initial condition„p1(0),p2(0)… we can find the
chaotic motion of the system. Chaos first appears around
critical coupling«c , and the chaotic region can be enlarg
by further adjusting the initial state. For our system, we o
06621
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serve the transition from quasiperiodicity to chaos in as
ciation with the MS transition for certain initial condition
when « is increased from zero, as shown in Figs. 3~c! and
3~d!.

We now investigate the behaviors of the interaction e
ergyhI and the phase difference^uDuu& also for the QP to the
CH MS transition. Figure 6~a! is same as Fig. 4~a!, but with
the initial condition of Fig. 2, and find that the behavior ofhI

is considerably different from that in Fig. 4~a! for the QP to
the QP MS transition. First, there is no long any power l
scaling @such as in Figs. 4~b! and 4~c!#, and we observe a
finite slope of thehI curve for«&«c8 . This is not surprising
since the scaling« region around«c in Fig. 4 is now re-
placed by the chaos region for the present initial conditi
The most important observation in Fig. 6~a! is that at the
transition pointhI monotonously increases not only for«
,«c8 , but also for«.«c8 ~excluding some fluctuation near«c8
and some quasiperiodic windows in the chaotic region!, and
thushI does not take on a maximum at«c8 . This is in sharp
contrast with Fig. 4~a!. In order to explain the monotonou
increasing behavior ofhI , we again compute the phase di
ference^uDuu& in Fig. 6~b!, and find that^uDuu& also in-
creases monotonously with« in the QP to CH MS transition.
This observation coincides with the feature of Fig. 6~a!,
while dramatically differs from Fig. 5~a!.

The dynamical mechanism underlying the monotono
behavior in Fig. 6 forhI and ^uDuu& is that, unlike the qua-
siperiodic MS motion, the phases of the two oscillators c
never be locked to each other in the chaotic MS state. In
7~a!, we plot the time variation ofD̃u(t)5 ũ1(t)2 ũ2(t) @dif-
ferent to Eq.~8!, hereũ1,2(t) is defined in the real range# for
a chaotic MS state. The figure shows clearly stick-slip m
tion @17–20#, i.e., D̃u(t) oscillates within a 2p region in the
long-time ‘‘synchronous’’ segment, and abruptly jumps
2np (n561,62, . . . ) angles in a short-time ‘‘desynchro
nous’’ segment, and then oscillates within the 2p region be-
fore repeating the desynchronous burst, and so on. The in
vals of the synchronous segments and the jump distance
5-6
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FIG. 7. ~a! The stick-slip and random-walk-like motion of phase differenceDu(t) in the chaotic MS state.~b! The probability distribu-
tions of DuM for different couplings in the chaotic MS region.
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the desynchronous segments appear to be random. An i
esting fact is that the system can never reach full synchr
zation~i.e., a state with oscillation in 2p region only without
any jump! in the chaotic MS states, no matter how large«
is. As « increases in the chaotic MS region, more synch
nous segments appear and longer phases are locked w
2p for longer periods of time. Also, with the stick-slip mo
tion the phase differenceDu(t) has a greater probability to
stay aroundDu(t)M'6p for larger coupling as shown in
Fig. 7~b!. This helps to explain whyhI increases monoto
nously in the chaotic region after MS.

V. DISCUSSION AND CONCLUSION

In conclusion we have investigated measure synchron
tion of two coupledw4 Hamiltonian oscillators for both qua
siperiodic and chaotic motions. Certain quantities, such
the bare energies, the interaction energy, and the phase
ference, are computed to quantitatively analyze the va
tions of the system dynamics and statistics. For the MS tr
sition between quasiperiodic states, we find that while
average bare energy undergoes a discontinuous jump a
critical point, the average interaction energy is continuo
tt

ev

n
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and it takes the maximum value at the transition. Howev
the derivative of the interaction energy is discontinuous, a
it diverges with certain power law scalings when the co
pling approaches the critical point from both sides. The s
gular behavior of the interaction energy can be heuristica
explained by the statistics of the phase difference of the
oscillators. For the chaotic MS state, we find that the ph
difference performs a stick-slip and random-walk-like m
tion ~long-time synchronous segments together with rand
desynchronous bursts!. The average phase difference^uDuu&
increases with an increase of the coupling, and this lead
the monotonous increase of the interaction energy in the c
otic MS state.

It is emphasized that in both the quasiperiodic and cha
measure-synchronous states, there are numerous other
of transitions to various quasiperiodic windows with diffe
ent characteristic dynamics@see Figs. 5~a! and 3~d!#, and it is
interesting to clarify these transitions. In this paper, we ha
found some power law scalings at the MS transition from
to QP numerically. Theoretical analysis has yet to be m
for explaining these scaling laws for predicting the exp
nents and clarifying the relations between them. We hop
address these issues in a separate investigation.
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