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Measure synchronization in couplede? Hamiltonian systems
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Transitions to measure synchronization both in the quasiperiodic and chaotic cases are investigated based on
numerical computation of two couplegt equations. Some relevant quantities such as the bare energies, the
interaction energy, and the phase difference of the two oscillators are computied to clarify the characteristics of
the transitions and the measure-synchronous states. A bifurcation with discontinuous bare energy and continu-
ous interaction energy, which takes the maximum value at the critical point, is found for the transition from the
desynchronous quasiperiodic state to the measure-synchronous quasiperiodic state, and the related power law
scalings are deduced. Stick-slip and random-walk-like behavior of the phase difference is found for the chaotic
measure-synchronous state, and this explains the monotonous increase of the interaction energy with an
increase of coupling.
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[. INTRODUCTION portant quantities have not been investigated at the MS tran-
sition. In this paper, we use two coupled Hamiltoniah
Synchronization phenomena have been investigated sin&§uations as our model, which is a typical model in classical
the 17th century1]. The early studies focused on the syn- mechanics and can be easily formulated in quantum mechan-
chronization of various periodic systems and, recently, chaol§S [11~13. With this model we focus on the behaviors of
synchronization has attracted much attentigr6]. Never- the interaction energy and the phase angle_ _dlffere_nce be-
tween the two oscillators around the MS transition point. For

theless, so far most of the works on synchronization phefhe MS transition between two quasiperiodic states, we

nomena have considered dissipative systems only, since SYR5und an interesting feature that the maximum interaction

chronizgtion between two trajectories is often rel_ated to th%nergy and the maximum average phase difference are at-
contraction of the phase space volume. Hamiltonian systemgineq at the critical point, and we computed numerically the
conserve their phase space volurig and does not allow  yejated power law scalings. This MS transition is found to be
two nonidentical trajectories approach an identical one asymexplained in text showing a first-order discontinuous bifur-
pototically. cation, while some other quantitiés.g., interaction energy

In Ref.[8], the authors revealed an interesting synchroni-showing a second-order continuous bifurcation with discon-
zation phenomenon of Hamiltonian systems: measure syrtinuous slope at the transition point. For chaotic MS state, we
chronization (MS), i.e., they found a ftransition in two found stick-slip phase variation and a monotonic increase of
coupled Hamiltonian oscillators from a state where the twanteraction energy with an increase of coupling. The paper
oscillators visit two different phase space domaimeasure will be organized as follows. In the following section, we
nonsynchronoysto a state where the two oscillators sharepresent our model and describe the MS phenomenon. In Sec.
the same phase domaimeasure synchronougdamiltonian  1ll, the MS transition between quasiperiodic states is inves-
systems serve as typical model systems in classical as well igated and in Sec. IV the transition from quasiperiodicity to
guantum mechanic9-11], and a variety of practical sys- chaos through MS is studied. The conclusion and a brief
tems can be well approximated by the Hamiltonian formal-discussion are given in Sec. V.
ism even at weak dissipation. Thus, it is important to under-
stand the synchronization processes of Hamiltonian systems. |l MODEL AND MEASURE SYNCHRONIZATION
Moreover, it is of great significance to extefifl possible
the concept of synchronization to quantum systdétasour
knowledge, no such extension has appearaccomprehen-
sive understanding of synchronization in Hamiltonian sys- pi+p5  qi+qs )
tems is a crucial step towards such extension. ) + 4 +e(qr—02)" (1)

So far we have understood much less about MS of Hamil-
tonian systems than synchronization behavior of dissipativélumerically, we simulate the corresponding canonical equa-
systems. For instance, the behaviors of many physically imtions

Our model comprises two linearly coupled identigzfl
systems with the Hamiltonian
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FIG. 1. Trajectories of the two
oscillators of Egs(2) in the (g,p)
plane. p;(0)=0.1 and p,(0)
=0.2. (a) e=0: The two trajecto-
ries are periodic.(b) £=0.001:
The two separated(measure-
desynchronoysquasiperiodic or-
bits. (c) and (d) £e=0.0035: The
two trajectories share the same
phase space and reach MS.
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that the two distinctive tori of Fig. (b) merge to an identical
enlarged torus, and both the oscillators share the same phase
3 _ .3 _ domain with their quasiperiodic motions, indicating a phe-
P1=—01+26(0~Gu)s P2=—0z+2e(=G) D | Grenonof Ms. In Fig. 2, we do the same as Fig. 1 by
A simple analysis shows that with couplirg serving as an replacing the initial condition asp,(0)=5.42x10"?,
adjustable parameter, the total energy can be regarded as Bg(0)=0.217, and using different couplings. The results are
irrelevant parameter by a suitable scaling. Thus, we fix théhe same as Fig. 1, except that the trajectories in Figs. 2
total energyH=0.025 throughout the paper, and study the@nd 2d) are chaotic rather than quasiperiodic as in Figs) 1

ql:pli q2:p2!

system behavior by varying the couplieg and Xd). Therefore, we observe a MS transition between
The system’s dynamics depends not onlyegnbut also  different quasiperiodi¢QP to QR, motions, and also a MS
on its initial condition. Specifically, we will fix transition from quasiperiodicity to cha¢®P to CH.
In order to clarify the MS transitions we measure the av-

g.(t=0)=q,(t=0)=0. (3)  erage bare energidgg=(E;), j=1,2 as
A convenient feature of this arrangement is that the interac- 1(7
tion energy hl,Zfoo Eix(t)dt,

Ei=e(d1—0qp)? 4 p240) gt A1)
1, 1,2

is kept zero initially, and the variation ef does not change Eia)= 2 + 4 ®)

the total energy for any initial choices @f(0) andp,(0).
Therefore, in our system there are two adjustable parametershd plot these quantities in Fig(g3 for p;(0)=0.1, p,(0)
one is the coupling strength and the other is the initial =0.2 (the parameters for Fig.) by varying couplings. It is
value ofp; (note thatpi/ZsH andp,=*+2H- pzl). clear that there is a sharp transitionsat ¢.=0.0032. Be-
With system(2) we can find indeed different kinds of MS fore e. (e<e.) there is a finite difference betwedn and
transitions. In Fig. 1 we fip,(0)=0.1, p,(0)=0.2 and plot  h,, while aboves both oscillators have an identical average
the trajectories of the two oscillators ig—p; (j=1,2), bare energy, clearly indicating MS. The finite jump of the
phase planes for different couplings. In Figa)l for zero  average bare energy differendad=h,—h,; seems to indi-
coupling, both oscillators have periodic orbits in different cate a first-order phase transition. In Figbj3we plot the
energy surfaces determined by its initial conditions. Withlargest Lyapunov exponeftE) \ for the case of Fig. &),
nonzero but small couplingg-ig. 1(b), £¢=0.001], the two and find zero\ before and aftee, justifying the MS tran-
periodic orbits of Fig. a) are replaced by two smooth qua- sition is between quasiperiodic motions.
siperiodic trajectories wandering in two distinctive tori. By  In Figs. 3c) and 3d) we do the same as for Figg.a@and
further increasing [Figs. 1c) and Xd), e =0.0035], we find  3(b), respectively, but withp,(0)=5.42x10"? and p,(0)
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FIG. 2. The same as Fig. 1
with  p;(0)=5.42x10"? and
p»(0)=0.217. (@) =0, (b) ¢
=5.5%x10"3, (c) and (d) e=1.5
X102, Measure synchronization
is achieved ir{c) and(d). The mo-
tion is periodic in(a), quasiperi-
odic in (b), and chaotic inc) and

(d).
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FIG. 3. (a) Average bare energies of EdS), h; ,, plotted vss. p;(0)=0.1 andp,(0)=0.2. Measure synchronization occurs at a critical
couplinge =¢,=0.0032, where discontinuous jumpstof, can be identified(b) The largest LE plotted vs. Zero\ before and aftee
shows a MS transition from quasiperiodicity to quasiperiodidity.Same aga) with p;(0)=5.42x10 2 andp,(0)=0.217. MS occurs at
£.=6.3x10"2 and the fluctuations di; , curves fore = ¢ are due to the chaos-induced long transiéftSame agc) with the largest LE
A plotted.\ changes from zero to positive right at the MS critical paifit Thus, in this case the MS transition is associated with the
transition from quasiperiodicity to chaos.
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FIG. 4. p1(0)=0.1 andp,(0)=0.2 (for both Figs. 4 and b (a) Average interaction energy; of Eq. (6) plotted vse. Unlike Fig. 3a),
h, is continuous and has a finite maximum valuegt The derivative of thén, curve has discontinuity at, and has infinite slopes right
before and aftee.. (b) and(c) The power law scalings akh,(¢)=h,(e.) —h,(g), Eq. (7), before and aftet., respectively.

=0.217(the parameters of Fig)2From Fig. 3c) we can see against the coupling. We find thath, has a singularity at
also a MS transition at=¢.=6.3x10 3, and from Fig. the critical couplinge.. In Figs. 4b) and 4c) we show that
3(d) we find zeron (quasiperiodicity for e<e and positive  this singularity has power law scalings

\ (chaoticity for e>¢/. Thus, the MS transition is directly

associated to quasiperiodicity-chaoticity transition. This ob- hi(ec)—hi(e)x(g,—¢&)%, e<ec;
servation is quite different from the conclusion of REd],
where the authors declared that MS transitions have no rela- (e —h(e)x(s—80)f, e>e.: )

tion with transitions to chaos. For chaotic motion one needs
extremely long time to reach,=h; for the MS state just
after the MS transition, and this is the reason vihy, fluc- @~
tuate in Fig. 8c) aftere/ .
Several interesting features can be observed in Fig. 4.
lll. MS TRANSITION BETWEEN QUASIPERIODIC First, while the bare energiés , have discontinuity at in
STATES Fig. 3(a), h, is continuous at the critical point in Fig (@
Since h;, and h; have the same unithg+h,+h =
We now proceed to study the characteristic features of MS=0.025), it is thus nontrivial that at the same critical pomt
transitions. In this section, we focus on the QP to QP tranS|hl , show a “first-order” phase transition whilk, shows a
tion of F|g Ja). Itis obvious that the interaction between the “second-order” phase transition. The MS transition seems to
two ¢* oscillators plays a key role for the MS transitions. belong to a novel class of bifurcations.
Thus, it is interesting to investigate the behavior of the inter-  Second, though, is continuous around, and has a finite
action energy in the transition process. In Figa)4ve plot  maximum value at., the derivative o, over¢ [i.e., the

the average interaction energy slope of theh,(&) curve] has a discontinuity and diverges at
17 ., following the scaling laws of Eq7). The shape ofi,(¢)
hlz_f e[ gy (t) — (1) ]2dt (6) curve Iooks_3|mllar to the. type of phase transition in sta-
0 tistical physicg14-1§.
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FIG. 5. (a) Average absolute phase differendd 4|) plotted vse. (b) Probability distribution density oA 6y, for different couplings
e<e.. Singularity ofp(A 8y) atA 6= = 7 is observed(c) The power law scaling gé(A 6y,= = ) near the critical point<e., Eq.(9).
(d) The maximum phase differenéamplitude A=|A 6(t)|uax Plotted vse for e>¢.. Amplitude A decreases asincreases, justifying the
decreasing behaviors bf in Fig. 4@ and{|A d|) in Fig. 5@ for e>¢.. (e) The power law scaling of Eq10) for the amplitude of phase
difference fore>e. .

It is interesting to understand wiy increases so quickly Here, 6, (t) is defined in the rangg0,27] and A 6(t)y is
beforee., while decreases slowly after the MS transition. defined in the rangé— ,7r] so as to indicate the relative
Since the interaction energy is proportional to the couplingpositions of two oscillators in the phase plane. We find in
g, itis thus natural thalt, increases as increases. However, Fig. 5a) that(|A 6|) increases as increases fos <e.. This
a nontrivial behavior fore <e. is thath, increases withe  tendency causes the increase of the average spatial distance
much faster than linear increase. This feature can be egetween the two oscillators, leading to a faster than linear
plained, based on the average phase difference between threase of the interaction energywith e as showin in Fig.
two oscillators defined as 4a).

10T The behavior of the phas_e differ_enc_e forxe. can be
(|A6))y= ,f |A6(t)y|dt, understood as follows. The interaction is the key force for
TJo the measure synchronization. Before synchronization the two
oscillators have different phase frequencies. Near the MS

Ab(t)y=sgrAo(t)][7—|A6(t)mod7|], transition point, the difference of the frequencies of the two
oscillators becomes small. At the same time, the phase dif-
AO(t)=0.(t)— 0,(1), ference has a larger probability of staying near the difference
anglesA d(t)y,~*= 7 ase is nearer to the critical coupling
0,(t)=arctarip;/q;) e[0,27], i=1,2. (8) e., because at these angles the interaction can play the most
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FIG. 6. p;(0)=5.42x 10" 2 andp,(0)=0.217(for both Figs. 6 and )Z (a) Same as Fig. @) but with a different initial condition. In the
chaotic MS stateh, monotonously increases withfor e >¢/ (excluding quasiperiodic states in some windows andefore ), in sharp
contrast with the behavior of Fig(d. (b) The average absolute phase differeficed|) plotted against.

important role in bringing the two oscillators to synchroni- serve the transition from quasiperiodicity to chaos in asso-
zation and phase locking. This is wkijA 6|) increases with  ciation with the MS transition for certain initial conditions
e for e<e.. In Fig. 5b), we plot the phase difference prob- when e is increased from zero, as shown in Figéc)3and
ability distribution densityp (A 6y,) for differente. Itis clear  3(d).
that p(A 6y~ =) increases rapidly as approaches, We now investigate the behaviors of the interaction en-
and thatp(A 6y ~0) decreases as goes tos.. These ex- ergyh, and the phase differen¢gA 6|) also for the QP to the
plain well the tendencies &fA 6] in Fig. 5@ andh, in Fig.  cH MS transition. Figure @) is same as Fig. (@), but with
4(@) for <. In Fig. 5c), we show thap(A Oy ~m) hasa  the initial condition of Fig. 2, and find that the behaviorhgf
power law scaling relation witk.—& as is considerably different from that in Fig(a) for the QP to
_ -3 the QP MS transition. First, there is no long any power law
p(AOy~m)*(sc—e) ©) scaling[such as in Figs. @) and 4c)], and we observe a

After MS (e>¢.), the interaction energy, decreases finite slope of then, curve fore<e . This is not surprising
with & [Fig. 4@]. This phenomenon is a bit surprising since since the scaling: region arounds. in Fig. 4 is now re-
E,(t) appears to be proportional ta This tendency to de- placed by the chaos region for the present initial condition.
crease can be again understood, based on the behavior of thee most important observation in Fig(ap is that at the
phase differencé 0. After the MS transition the phases of transition pointh; monotonously increases not only fer
the two oscillators are already locked to each other with the<e/, but also fore > ¢/ (excluding some fluctuation neaf
differenceA 0(t) = 6,(t) — 6,(t) oscillating within the region and some quasiperiodic windows in the chaotic regiand
of (—,m). In Fig. Xd), we plot the variation of maximum thush, does not take on a maximum & . This is in sharp
phase differencé\=|A 6|y ax with couplingz. The ampli-  contrast with Fig. 4). In order to explain the monotonous
tude A decreases monotoniclly from.. The shrinking of  increasing behavior df,, we again compute the phase dif-
|A 6] leads to the decrease lof, and this decreasing trend is ference(|A ]} in Fig. 6b), and find that(|A¢|) also in-
even more drastic than the linear increase ofeading to the  reases monotonously within the QP to CH MS transition.
overall decrease df; in Fig. 4@a) for £>&.. Moreover, as  Thjs opservation coincides with the feature of Figa)p
approaches the slope of theA—e curve diverges, whiléd  \yhile dramatically differs from Fig. @).
itself approaches a finite value of. This again shows @ = The dynamical mechanism underlying the monotonous
scaling power law relation of Fig.(8): behavior in Fig. 6 for, and(|A 6|} is that, unlike the qua-

12 siperiodic MS motion, the phases of the two oscillators can
m—A(e)*(e—ec)™" (10 never be locked to each other in the chaotic MS state. In Fig.
7(a), we plot the time variation of 6(t) =6, (t) — 8,(t) [dif-
IV. MS TRANSITION FROM QUASIPERIODICITY TO ferent to Eq.(8), hered, (t) is defined in the real rangéor
CHAOS a chaotic MS state. The figure shows clearly stick-slip mo-

In the preceding section, we observed a MS transitiortion [17—20, i.e., A 6(t) oscillates within a 2 region in the
from QP to QP and found the related power scaling laws. Byong-time “synchronous” segment, and abruptly jumps to
changing the initial conditioiip(0),p,(0)) we can find the 2n7 (n==1,£2,...) angles in a short-time “desynchro-
chaotic motion of the system. Chaos first appears around th@ous” segment, and then oscillates within the Begion be-
critical couplinge., and the chaotic region can be enlargedfore repeating the desynchronous burst, and so on. The inter-
by further adjusting the initial state. For our system, we ob-vals of the synchronous segments and the jump distances of

066215-6



MEASURE SYNCHRONIZATION IN COUPLEDg* . .. PHYSICAL REVIEW E67, 066215 (2003

500

—o—£=0.00976 [-0.010
a,
o @ ﬁ% ——=0.0108 o ®)

——5=0.011 - 0009

-500 4 - 0.008

- 0.007

-1000 4
- 0.006

AB(t)
Vov)d

-1500 - 0.005

- 0.004
-2000 4

- 0.003

-2500 4 - 0.002

! T T v T v T T T T T
30000 60000 90000 -4 -3 2 -1 0 1 2 3 4

t AO

o -

FIG. 7. (a) The stick-slip and random-walk-like motion of phase differeda&t) in the chaotic MS statéb) The probability distribu-
tions of A 8y, for different couplings in the chaotic MS region.

the desynchronous segments appear to be random. An inteand it takes the maximum value at the transition. However,
esting fact is that the system can never reach full synchronithe derivative of the interaction energy is discontinuous, and
zation(i.e., a state with oscillation in2 region only without it diverges with certain power law scalings when the cou-

any jump in the chaotic MS states, no matter how laege pling approaches the critical point from both sides. The sin-
is. As € increases in the chaotic MS region, more synchro-gular behavior of the interaction energy can be heuristically
nous segments appear and longer phases are locked withgxplained by the statistics of the phase difference of the two
2 for longer periods of time. Also, with the stick-slip mo- oscillators. For the chaotic MS state, we find that the phase
tion the phase differenca 6(t) has a greater probability to difference performs a stick-slip and random-walk-like mo-

stay aroundA 6(t),,~ = for larger coupling as shown in tion (long-time synchronous segments together with random
Fig. 7(b). This helps to explain why, increases monoto- desynchronous burstsThe average phase differenge 6|)

nously in the chaotic region after MS. increases with an increase of the coupling, and this leads to
the monotonous increase of the interaction energy in the cha-
V. DISCUSSION AND CONCLUSION otic MS state.

It is emphasized that in both the quasiperiodic and chaotic
In conclusion we have investigated measure synchronizaneasure-synchronous states, there are numerous other types

tion of two coupledy* Hamiltonian oscillators for both qua- of transitions to various quasiperiodic windows with differ-
siperiodic and chaotic motions. Certain quantities, such aent characteristic dynami¢see Figs. &) and 3d)], and it is
the bare energies, the interaction energy, and the phase difiteresting to clarify these transitions. In this paper, we have
ference, are computed to quantitatively analyze the variafound some power law scalings at the MS transition from QP
tions of the system dynamics and statistics. For the MS tranto QP numerically. Theoretical analysis has yet to be made
sition between quasiperiodic states, we find that while thdor explaining these scaling laws for predicting the expo-
average bare energy undergoes a discontinuous jump at thents and clarifying the relations between them. We hope to
critical point, the average interaction energy is continuousaddress these issues in a separate investigation.
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